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In most electrical machines the gap between the rotor and the stator is 

filled with air. Investigations (for example, [ 1 ] ) have shown that in 

this case laminar motion is preserved as long as the Reynold’s number, 

NRe = P ‘1 (R, - R1)/p, remains less than the critical value, which is equal 

to 41.2 v’ R,/(RZ - RI), where Rg and RI are the radii of the outer and 

the inner cylinder respectively, p- the coefficient of viscosity, p-the 

density, IV1 -the linear velocity of the rotating inner cylinder (with a 

stationary outer one), RR = 1/2(R1 + R,). Numerical computations show 

that for many existing electrical machines this condition is satisfied, 

and the motion in the air gap is laminar. 

Since a substantial portion of the heat produced in the rotor is trans- 

mitted across the air gap, it is important for heat transfer calculations 

to investigate the state of the air. The use of high voltage insulation, 

which allows large temperature differences to exist, brings up the 

question of the effect on the character of the motion of the changes in 

the physical properties (viscosity and thermal conductivity) of the ai-: 

due to temperature changes. 

In the last few years the electrical machine industry has become 

familiar with a new type of machine - the so called immersed machine, in 

which the gap between the rotor and the stator is filled with oil. As is 

well known, the viscosity of liquids varies considerably with temperature, 

and consequently the problem posed here is an important one. A similar 

problem arises, for example, in measuring viscosity by the rotating 

cylinder method [ 2 1 , and in other fields of technology. 

An investigation of the question when the viscosity and the thermal 

conductivity are proportional to T”, with n = 1 and l/2, is contained in 
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the work of Stepaniants 13 1. Closely related questions are examined in 

the works of Targ t[ 4 1, especially Section 25) and Borisenko 15 1. 

The authors wish to express their gratitude to L.G. Loitsiansky, who 

became acquainted with the work while reviewing it, and made some remarks 

which were taken into accountin the final editing of the text. 

1. Derivation of the field equations and the formulation 
of the problem. Let us examine a two dimensional (lYz = 0, a/az = 0) 
laminar uniform (a/at = 0) axisynvnetric M/a+ = 0) flow of a liquid or 

a gas between two coaxial cylinders with radii R, and R,(R, < RZ), with 

the cylinder axis coinciding with the z-axis. Then, from an examination 

of the portion of the flow enclosed between the cylinders with radii R, 
and R, R, < R < R2 (with the same axis), it follows imnediately that 
WR = 0, i.e. the motion of the medium takes place along concentric circles 

R = const. 

It is easy to derive the basic flow equations by exmnining an element- 

ary layer contained between the cylinders with radii R and R + dR; in 
doing this we will neglect inertia forces. let p denote the density of 

the mediun, and p- the pressure. Since the centrifugal forces must be 

balanced by the differences of the pressure on the surfaces of this layer, 

1 dp :.22xRdRp=2nRdp, or ----=F 
P dR (1.1) 

'lhe resultant moment of the viscous forces acting on the layer must 

vanish. Therefore, 

d(pR,2xRR)= d[p ($%-$'rr R23= 0 

The expression for pR 

4 

is easily derived (viz. 14 I, p. 41, for 

exanple). Integrating (1. ) we obtain 

(A = con&) 

(1.2) 

(I.31 

Finally, let us write down the energy equation for the cylindrical 
layer: 

d(hd&2nR)= - E2rcRdRs-p (f$ - ;)” 2xR dR (1.4) 

Here E is the dissipation function, the values of which can be ob- 
tained, for example, from I4 I (p. 481, and X is the thermal conductivity 

of the medium, expressed in units of mechanical energy. From (1.3) and 

(1.4) we get 

&(hRfg)+-$=O (1.5) 
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The constant A and the three integration constants for equations (1.3) 
and (1.5) must be determined from the four boundary conditions. Two of 

these are given by prescribing the cylinder speeds, i.e. by prescribing 

W(R,) =w1, IV(&)= W, (1.6) 

The other two conditions specify the temperature regime at the surfaces 

of the cylinders; they consist in prescribing the cylinder temperatures 

(boundary conditions of the first kind) 

T (R,) = T,, T (R2) = T, (1.7) 

or in prescribing the heat flux through the cylinders (boundary condi- 

tions of the second kind), or, finally, in prescribing the heat exchange 

between the cylinders and the medium (conditions of the third kind). 

Assume for definiteness that Wz = 0, Tl > T2, and boundary conditions 

of the first kind (1.7), although all the other cases could be examined 

in a similar manner. After solving the system of equations (1.3) and 

(1.5) with boundary conditions (1.6), (1.71, we can determine the pressure, 

p(R), from equation (1.1) (taking into account the equation of state). 

From equation (1.5) it can be seen that every stationary point of the 

function T(R) is a maxim point; therefore, if Td Tl (this limitation 

is a natural one from physical considerations), then the function T(R) 
decreases monotonically. Introduce the dimensionless quantities 

RI-R 
x=Rz-Rl ’ 

h=Ra-R~ Q 
T-TTI W 

-, RI 
=-, 

TI- Ta w= VI 
(1.8) 

apj+, p (8) = e (& = AT=T, , p2 = !lT=Tz) 

Then equations (1.3) and (1.51, and the boundary conditions (1.6), 

(1.7) become 

d w a 

dx 1-hx 
-0 

- ~ - 3 (8) (I- hx)S - (1.9) 

d”, ,j (‘) (l - hx) d$] + x 9 (8) (;‘_m = ’ - (1.10) 

9 (0) = w (0) = 0, J+(l)=w(l)= 1 (O<z<l, h<l) (1.11) 

where a is an unknown constant, and 

WPP2 
X = (T, - Tz) X2 

(1.12) 

In general, for arbitrary a(O) and /3(e), the system of equations (1.91, 

(1.10) cannot be solved in quadratures. 'Ihe basic purpose of this work is 

to construct approximate formulas, using the small parameter method, for 
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as general a situation as possible, taking as a point of departure cer- 
tain special cases where the solution can be obtained by quadratures. 

2. Ihe case of small K. h certain cases the constant K is small; 
this happens, for exsmple, when the medium is air or water, while the 
speed V1 is not too large, and the temperature difference, Tl - T2, is 
not too small. 

For example, if WI = 20 msec-', T1 = 80°C, 'Jr2 = 3oOC, then formula 
(1.12) gives for air, water, and lubricating oil respectively, 

X = 5.79.10-3, x = 1.04.10-2, x = 8.9 

Here the values of A and /.L were taken from [ 4 1 (p. 22), and the value 
of K for lubricating oil is shown to eqhasize that K need not be small. 

Assuming K is small, one can use the expansion 

9=9,+ x3, $- r.29, + . . ., w==w~+%U~~+K%‘2+ . ..) 

a = UQ -j- KU, -j- X‘%* + . . l (2-f) 

'Ihe terms in the series are determined from the equations obtained by 

substituting the series in (l-9), fl.lO), and equating coefficients of 
like powers of K. ‘Thus, the terms of lowest order satisfy the s8ne equa- 
tions (1.9)-(l.ll), but with K = 0. In this case it is easy to integrate 
the equations. From (1.10) and the boundary values for 8, we get 

(2.2) 

From this, one determines the function 0,(x). Sbstituting this result 
in (1.9) and taking into account the boundary conditions for w0 we get 

(2.3) 

Equations determining the terms of first order are obtained by equating 
the coefficients of K to the first power. In doing this, of course, one 
must use expressions of the form 

ct (9) = a (ao) + x8gx (ho) + 2 
[ 
8g5 (8,) -/- y d (a&] + . . . 

Taking this remark into account, the aforementioned equations take the 
form: 
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d iL’t a1 O&? 190) --- 
dx I--kx p (Be) (1 -k@ -I- [9 (s,)J* (I - hx)~ = * 

- w g] + ‘s (&J ;;“_ hz)S = 0 

3, (0) = WI(O) = 8, (1) = WI(f) = 0 

where the functions 8, (xl, uiO(.z) and the constant a0 have already been 

evaluated. fh integrating we get 

w1 = (1 - kx) [a,G, fz) - aoGz (x)] ! ‘1 
Gs (1) 

= 'OG, 

(2.4) 

(2.5) 

(2.6) 

In an analogous way, if it is desired, one can find the terms of 

second and higher orders in K. 

Let us examine the example of a liquid with small K (water, in 

particular). Bere we can take 

‘MS case was examined in [ 2 1 in general form; as it turned out, the 
solution can be expressed in terms of Bessel Functions (let us note that 
for large values of the argument it is convenient to use the asymptotic 

representation of these functions). Ii K is small, one can obtain an 

~p~ximate formula which uses only elementary functions. In fact, cal- 
culations from (2.2) and (2.3) yield 

3 _ in(1--kz) 
O- ln(1--k) 

w. = 1 It”, 
t r(22hz) + P” 

2ln(1-~hz)+hz(2-~z) 
4k!n@---k) I 

%I 

Corrections for K are computed from (2.4) and (2.51, and in the pro- 

cess all the integrals can be evaluated and yield functions similar to 

those in the expression for u+,(x), although the results are quite cumber- 
some. Let us limit ourselves to the case of a small dimensionless gap 
between stator and rotor (i.e. small h), where one can retain terms of 
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first order only in h and K. ne computation gives 

1059 

nus, for small h and K for a liquid we obtain the approximate fon- 
ulas (with an error of second order) 

2 x B0z2 (1 - 2) (4 _I_ po + f&) 
’ 3(24-/3O)3 ’ 

If the thermal conductivity (and with it the quantity a) cannot be 
considered constant, then to improve the result one can use 1/2(hI + AZ> 
instead of A,, or one can let a(8) = 1 + a,(6) with small aO, ant-l, ex- 

panding in powers of aO, retain terms of first order only. 

In conclusion, let us note conditions under which for an arbitrary 
medium (i.e. arbitrary a(B) and /3(O) it is permissible to discard the 
terms in K in solving equations (1.9) and (l.lO), i.e. to accept 0, and 

w”, given by (2.2) and (2.31, as the exact solution. In order to do this, 
let us integrate equations (1.9) and (i. 10) 
place the variable quantities by their mean 
by stars, and they can take on different va 
In this way we will obtain successively 

z 
W 

I-hx 

and in these integrals re- 
values (these will be denoted 
ues in different formulas). 

a = 2a* (1 --h) 
2h (2.7) 

a 

s a(9)&+ = -+ lll(l-h)-~+[&((l _lhx), -I) + & lntl -h)] 
0 

1 
c=-- h 

In (1 -h)‘ s 
0 
8 

s 
0 0 
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Here 

F (x) = In(1-hhs) 1 
I 

1/ 1 
In(1 -h) B* 

- 
2h2 ((1 -_j2 

- - 1) + + In (1 - h,] - 

(2.8) 

If in the last expression we set K = 0, it will go over into equation 
(2.2), with 8 changing by A8. From the mean value theorem it follows that 

Since both of the terms in expression (2.8) for F(n) are positive and 
(if we do not consider 0 * ) monotone increasing, 

I I A8 <&+( (I& - 1) + & ln(1 - h)] (2.9) 

Thus, discarding the term in K in (1.10) leads to an error in T(R), 
which, in absolute value, does not exceed 

2h-hz +2(1-h)21n(1-h) I*zPmax 
(2 -It)* h2 hninA’min 

WI2 

(obtained by transforming the right-hand side of (2.9)). 

(2.10) 

If this error is smaller than the accuracy required in determining T, 
then it is certainly permissible to discard the terms indicated above, 
Let us note that the expression ( 2.10) can be sivlified in the case of a 

small gap: if we neglect terms of order h, it goes into 

PzP”max WI” - 
h min~mln 2 

For example, if the gap contains air, and O°C < T < 2O~C, taking the 

values for pmax from [ 6 I (p. 2561, we find that expression (2.10) exceeds 
lQ only if 

3.76.1W6.427 
2.64.10-6 . 

2 = 42.8 m set -’ 

The possibility of neglecting terms in K in equation (2.10) really 
means that under the conditions under examination one can consider the 

cylinders stationary in computing temperatures. 

3. The case of slowly varying h and p. For gases, in particular 

for air, the coefficients h and p vary slowly; the same situation pre- 

vails also for other media if the temperature difference, Ti - T2, is not 

too large. In this case one can put 

a (3) = 1 + “o’p P), BP) = 1 i-P09($) 
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where a0 and /-3, are small. Such formulas include all the possible cases 

of a(0) and p(0) which can occur. Equations (1.91, (1.10) can be re- 

written in the form 

(1 + PO9 (8)) $ (&x) -v&g5 = 0 

(1 -i- PO+ (8)) & [Cl + “off (3)) (1 - w $I-+ (1:;):3 = 0 (3.2) 

(3.2) 

We can look for solutions in powers of aO, &: 

8=9,+~,9,+p,%+..., w = w. + XOWl -’ Fow2 -+ . . ,) 

a = no + aoa, + poaz + . . . 

For the principal terms we get equations (3.11, (3.21, in which a0 = 

fl, = 0, i.e. we get the case of constant h and ~1. Then the equation (with 

boundary conditions (1.11)) can be easily integrated (see [4 I, p. 379, 

for example); we get 

9 

0 
= In (1 -W 

In (1 _ h) -I- h (2 : h)2 [12 -;; (y , hx) - (I -(y& h=q (3.3) 

w = (1 --h)x P---x) 2(1-h) 
0 (2 - h) (J - hx) ’ a0 = 2-_h (3.4) 

In order to find the terms of first order in a,,, flo, we equate the 
coefficients of a0 and /so in (3.1) and (3.2); this gives 

d Wl --- 
i ! dx I- hx (1 -?hx)S = 0 

From this, taking into account the 

wo and o,, it is easy to find all the 

constants al, a2 explicitly: 

homogeneous boundary conditions for 

functions wl, w2, 8,, 0,, and the 

x (2 - hx) 
w1 = al 2 (1 - hx) ’ ()=a 2--h 

‘2(1-h) 
or aI = 0, WI = 0 

w,=(l-_~) 
[ 
a x(2-hx) 

22(1-hx)2 - a,G (x)], ~2 = 4tf:h;!8Wlh 
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In 

As 
and K 

Then, 

a similar way we can express terms of second and higher order. 

an example, let us examine the case where X(T) and ~(7') are linear, 

is quite small (in particular, this takes place for an air gap). 

one can put 

where the constants a0 and PO are obtained 

u? 
? 

= 2 (l-k) (1 -kx) (2 -k)2x(2--kx) 

(2 - k) L --p - k) (1 - kx)? W-G&)] 

a 
1 

= In(1 -Fhr) 
,n(l_f&h) ww-G(4 

(Let us note that if, as frequently happens, the Prandtl number is in- 

dependent of the temperature, we must set a0 = PO, which simplifies some- 

what the formula obtained.) 

Let us restrict ourselves to terms of second order with respect to 

a0 and PO, and to terms of first order with respect to K. In doing this 

one can use the method just described; however, it is simpler to bring 

in also formulas (2.2) and (2.3) for the group of terms which do not 

depend on K. 

From (2.2) we obtain for this group of terms the equation 

Consequently, 

3, --_ y _+ +LC$$!C - $/"?'I 2 ? 2 (1 - ?/I +_ ... 

Substitution of this result in (2.3) yields, after some computations, 

an expression for wO; retaining only the terms of first order, we get 
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wg = (2-h) (1 -h) 
(1--1)2(2--N j_ p(;G;!(” 2&_ +. . . (3.3) 

(Let us note that here 8,, w0 have the same meaning as in Section 2, 

and not as in the beginning of the present paragraph.) tk for the correct- 

ion in K, we obtain it from formulas (3.3), (3.4). In particular, from 

(3.4) it is evident that in the expression for w, the term which is of 

first order in K and independent of a,, and & is absent. Cimbining these 

results, we obtain an approximate expression"for 8: 

The term in aO* 

fore, gives in the 

_ x 2 y2 (1 --- ?/) 
0 2 -I- ,, (:!” h)’ 

II 
(2 - IL) y - (’ -(1’“;;); hz) ] 

in this formula does not exceed (2/27) eO' and there- 

expression for T(R) a term not exceeding 

lhis term plays 

?L(i! I_q*(TI _I'?) 
_ 

a role only for a very large temperature drop; for 

example, if 0' < T< 200°C, then for Tl - T2 < 125O it is less than lo. 
Ihe term in K begins to play a role only for sufficiently large W,; for 

example, one can calculate that for a small dimensionless gap h, for 

00 < T< 200°C, it is of the order of lo only for W, > 70 msec-I. If the 

temperature drop, T, - T2; and the velocity, W,, are not too large, one 
can use the convenient formula 

$_,y A_ .& Y(l--) ___- - I 2 

with the expression for w being given by (3.5). 

If the dimensionless gap, h, is small, one can further .expand with 

respect to h and retain terms of first order in h only. If, furthermore, 

we retain terms of no higher than second order in aO, PO, and first order 

in K, then we obtain, after some calculations, 

8%X + a0 r(1 TX’ - a()” 
22(1--z) r(1 -Cc) x(1--) _ 

2 +x 2 h 2 

z(1 -z) 
7uzx+ PO 2 +-aopo 

z (I- 5) (1 - 22) 
12 

- ~2z(1-z)(1+4r)_hz(1--5) 
:‘o 12 2 

If it is possible to discard terms in aO*, a,,&, /lo', K and h, the 

formulas become extremely simple. 

4. l'he case of a gap small compared to the radius. In this 
case we can use the expansions 

8 = 8, + h8, f h%, + . . . . 20 = w. + iq + /z*w, + . . . , 

a = Ub + ha, + h%, + . . . 
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‘Ihe equations for the principal tens have the same form as the equa- 
tions (1.9)-(1.11) with h = 0; this corresponds to the case where the 

cylinders degenerate into parallel planes. IJnder this condition the equa- 

tions have been integrated in a general form in [ 5 1 . ‘l%e equations for 

the tens of first order then become 

320X 2 + --& (xwo) - * + 40;; y;;);;) - - = 
? ($0) 

0 

& [9,*’ (Bo) $ - xu (Jlo) -t$ -j- a (a,) $1 + 

This system of equations, although linear, is not in general solvable. 
However, it can be solved in certain special cases. ‘Ihis is the case for 

liquids (for all K). ?Ilen the system of equations for the principal terms 

has constant coefficients, and can be solved by using trigonometric func- 

tions (for example, [ 4 I , p. 332). In this case the equation for ~9~ also 

has constant coefficients, and after 8, is found, the function, ?ul, can 

be found by a simple integration. 
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